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1. Introduction

In the era of advanced biometric technologies, the quest for secure and efficient identification meth-
ods has led to the forefront of fingerprint recognition. Fingerprint identification stands as one of the
most reliable and widely adopted biometric techniques, offering a unique and distinctive signature
for each individual. This project embarks on the fascinating realm of finger photo identification,
where cutting-edge technologies converge to leverage the intricate patterns and details captured in
mobile-resolution finger images. By harnessing the power of image processing and machine learning,
our endeavor aims to develop a robust system capable of accurately identifying individual fingers
based on the intricate and unique features encapsulated in their images. A Colab demo of the
system can be found here.

1.1 Motivation
Our project is motivated by the compelling advantages offered by a finger photo identification
system. In comparison to other forms of biometric traits, finger photos present several favorable
characteristics:

• They can be captured with standard equipment like a modern mobile camera.

• The process of capturing them is non-intrusive, allowing anyone to capture them in their
preferred environment.

• Integration with existing systems is viable. For example, with appropriate image processing,
they can be matched against traditional fingerprints.

1.2 Dataset
We develop and test our system with the IIITD Mobile Finger Photo dataset, encompassing
1k+ fingerprints and 4k+ finger photos taken from 64 individuals, each providing photos of 2
different fingers. The images are categorized into:

• Natural: with random background;

• White: with white background;

• Indoor: under indoor conditions;

• Outdoor: under outdoor conditions;

• Live Scans: scanned with a dedicated device.

For our particular project, we exclusively utilized outdoor finger photos with a white back-
ground, totaling 1024 images. All finger photos originally have a size of 3264x2448. While we
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acknowledge that incorporating more data could potentially enhance subsequent performance, our
primary objective is to assess and validate our approach.

3 examples of finger photos used

1.3 Project Description
Within this project, we create a finger photo identification system. When provided with a
gallery of images and a probe image, the system is designed to provide the gallery image with the
highest matching score. We assume that the gallery consistently includes at least one correct match
for each probe, making the task closed-set identification. Nevertheless, the framework can readily
be expanded to accommodate open-set identification with minor adjustments.

On a high level, our project follows the following pipeline:

1. Image preprocessing

• Background removal

• Orientation alignment

• Cropping fingertips

• CLAHE enhancement

• Thresholding

• Ridge Thinning

2. Contrastive learning

3. Gallery evaluation

The full project source code is accessible here. The rest of this report will cover some related
works, our pipeline in detail, the experimental settings, and evaluation outcomes.
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2. Related Work

Despite recognizing the potential advantages of utilizing finger photos for identification, our review
of the existing literature revealed limited prior work in this specific domain. Although there have
been some previous attempts, we identified certain limitations and sought to address them through
the implementation of this project.

2.1 Dual Deep Fingerphoto Learning (DDFL)
The authors in [5] endeavored to employ two distinct finger photos for the collective recognition
of an individual. Their approach involves training two parallel deep neural networks, with one
specialized for the index finger and the other for the middle finger. The ultimate decision is made
by combining the outputs from both networks. In contrast, our methodology does not rely on
classification and operates at the finger level rather than the person level.

DDFL architecture

2.2 Finger-NestNet
In the investigation conducted by [6], the authors tackle the task of finger photo verification em-
ploying a sophisticated model that integrates convolutional layers and nested residual blocks. The
network is structured as a classifier; however, an inherent limitation of this approach arises as the
system faces challenges in classifying finger photos that were not part of the training dataset, given
the one-output-neuron-per-class nature of classification.
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Finger-nestNet architecture

2.3 Contrastive Learning
Self-supervised learning represents a machine learning paradigm in which a model autonomously
learns to make predictions about specific aspects of its input data without relying on explicit
human-provided labels. Instead of using labeled datasets, the model generates its own supervision
signal by creating surrogate tasks derived directly from the data.

In our specific scenario, despite having access to labeled data, we found value in adopting this
approach. Notably, contrastive learning stands out as one of the self-supervised paradigms that
endeavor to train models by maximizing the similarity between positive pairs (similar samples) and
minimizing the similarity between negative pairs (dissimilar samples). The core concept involves
embedding data points in a manner that brings similar samples closer in the feature space while
pushing dissimilar samples apart.

In our case, a positive pair consists of two images of the same finger, whereas a negative pair can
be any combination of two photos featuring different fingers.

2.3.1 SimCLR

The contrastive learning architecture employed in this project is SimCLR [2], with just a few
nuances. Originally, SimCLR works as follows:
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SimCLR framework

An image undergoes augmentation to create two versions, both of which are processed by a backbone
model and transformed into two embedding vectors h. These embedding vectors are then projected
through a linear layer to obtain z and are subsequently compared. The loss function is structured in
a way that encourages bringing two augmented versions of the same original image closer together
in the feature space, while pushing apart augmentations from two different images.

In our specific scenario, we do not augment our data. Instead, a positive pair simply consists of two
distinct images of the same finger. These two images pass through the backbone feature extractor
network (pretrained ResNet18 [3]) and are projected by a linear layer, resulting in two embedding
vectors.
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3. Method

This chapter comprehensively outlines the intricacies of our pipeline. In summary, the process
involves three key steps: image preprocessing, contrastive representation learning, and evalua-
tion.

3.1 Image Preprocessing
The objective of this stage is to transform the original images into a format that is readily digestible
by a machine-learning model. This stage is structured sequentially, with each step building upon
the previous. The steps are as follows:

1. Background removal

2. Orientation alignment

3. Cropping fingertips

4. CLAHE enhancement

5. Thresholding

6. Ridge Thinning

Some operations are directly executed by leveraging the OpenCV [1] library while others are by
hand-crafted functions. Next, we delve into each step.

3.1.1 Background Removal

The background of the original finger photos is often noisy, containing irrelevant artifacts that
might sway the feature extractor’s behavior. Thus, removing the background is a must step, and
we exploit the rembg library that implements the paper [4]. In short, this algorithm estimates
foreground elements through color and opacity (alpha) considerations, using a variable-sized search
window for unknown pixels. The algorithm is robust across different input trimaps. After initial
alpha matte estimation, they employ a fully connected conditional random field (CRF) for pixel-
level correction.
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Examples of original photos

Outputs of rembg

3.1.2 Orientation Alignment

As the images in the dataset exhibit various orientations, we standardize their alignment by rotating
all images such that the fingers are directed upwards. This alignment process involves computing
the average grayscale values along the four extremes of an image and rotating the side with the
darkest values to the bottom. This decision is based on the assumption that the darkest extreme
corresponds to the direction from which the finger originates.

Rotated images

3.1.3 Fingertip Cropping

To enable the feature extractor model to focus solely on pertinent features, we selectively crop
the images to include only the region enclosing the fingertip. This process involves identifying the
highest pixel with a non-zero grey value. Given the removal of the background and the vertical
rotation of the fingers, this pixel is expected to be situated at the top of the fingertip. Once this
pixel is determined, we draw a constant-size bounding box downward from it and crop the enclosed
region.
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Cropped fingertips

3.1.4 CLAHE Enhancement

We observe that oftentimes, one side of the finger photo is darker due to the lighting conditions.
To rule out this inconvenience, we apply CLAHE (Contrast Limited Adaptive Histogram Equal-
ization). This image processing technique proves especially beneficial in mitigating the impact of
uneven lighting on fingerprint images. By locally enhancing the contrast in small regions, CLAHE
helps reveal intricate details in both well-lit and shadowed areas of the fingerprint, ensuring a more
uniform and enhanced representation. For us, it contributes to improved visibility and feature
extraction.

CLAHE-enhanced images

3.1.5 Thresholding and Thinning

To streamline the task for the feature extractor, we simplify the enhanced images by thresholding
them into binary images. This is achieved using OpenCV’s adaptive thresholding method,
employing a neighborhood block size of 27 and a mean-based type of thresholding.
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Thresholded images

As an improvement step before thinning, we cleanse the noise by sliding a 3x3 local filter across the
image and blacking out a white pixel if the majority of the surrounding 8 neighbors are black.

Cleansed images

Finally, we apply thinning to make the ridges 1 pixel wide. Specifically, we employ OpenCV’s
ximgproc.thinning method to reduce the ridges into one-pixel-wide skeletons.

Thinned images
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3.1.6 Overall Transformation

That is it, the image preprocessing stage. Let us now have a holistic look at the whole image
transformation.

Original images

Preprocessed images

3.2 Contrastive Learning Setup
For training our backbone feature extractor, we adopt the contrastive learning framework on
a ResNet18 network pretrained as a classifier on ImageNet. Prior to it, we introduce a one-to-
three convolutional layer to handle single-channel images. Following the ResNet18, a linear
projector layer of size 128 is added to facilitate specialization.
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Finger Photo

One-to-three ConvLayer

ResNet18

Linear Projector

Embeddings

ResNet18 backbone with one-to-three convLayer and linear projector

The specific framework employed adheres to SimCLR, as detailed in the introduction. To reit-
erate briefly, the goal of SimCLR is to train a model to generate contrastive embeddings, where
embeddings of the same entity are brought closer in the latent space, while embeddings of different
entities are pushed farther apart. In our context, the objective is to have a feature extractor that
produces contrastive finger photo embeddings.

To achieve this, we structure our data batches as sets of finger photos. In each batch, we designate
one image as the anchor, include another image of the same finger as the positive example, and
include the rest as negative images from different fingers.
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Anchor Positive

Negative

Negative

Negative

Negative

pull

push

push

push

push

The goal of contrastive learning on a batch

The entire model is trained with the InfoNCE loss function as proposed in the original paper of
SimCLR.

InfoNCE Loss = − log
(

exp(sim(zi, z+
i ))

exp(sim(zi, z+
i )) +

∑K
j=1 exp(sim(zi, z−

j ))

)

Where:

• zi: Representation of the anchor sample.

• z+
i : Representation of a positive sample.

• z−
j : Represents negative samples.

• sim(a, b): Similarity function between a and b.

• K: Number of negative samples.

3.2.1 Training Setup

Our dataset comprises 8 finger photos for each of the 128 fingers, resulting in a total of 1024 images.
We partition it into a training set and a test set, ensuring that the set of fingers common to both
sets is empty. Specifically, we reserve all images of 12 fingers (192 images) exclusively for the test
set. This choice is motivated by the consideration that, during deployment, the system should not
have been previously trained on images of the incoming fingers.
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Original Dataset

Training Set

Test Set

finger-disjoint split
finger-disjoint split

Train-test split

Details about the training are omitted in this report and can be found in the code.

3.3 Evaluation Method
Following the fine-tuning of our feature extractor, we proceed with the system evaluation. Given a
gallery of finger photo templates (embeddings) and a probe (finger photo), the backbone extracts
a feature vector from the probe and compares it to the gallery embeddings. The gallery template
with the highest matching score is then returned as the identified one.

For efficient comparisons, we input all test images into the feature extractor to generate the 192x192
all-against-all matrix. In this symmetric matrix, the entry (i, j) contains the matching score
between template i and template j. Each template is utilized as a probe once. To determine the
identified finger in the gallery, we retrieve the second argmax in each row, as the first argmax
corresponds trivially to the probe itself.

As for the scoring function, we investigated the euclidean distance as well as the cosine simi-
larity and observed no clear winner.

Using the all-against-all matrix, we simulate multiple galleries by randomly partitioning the em-
beddings into probes and gallery templates. To simulate a gallery, we sample a few rows as probes
and some columns as gallery templates. A crucial constraint is that the gallery must include at
least one template from the probe fingers, as we are dealing with closed-set identification, ensuring
the presence of a correct template in the gallery.

For each of these galleries, we calculate the cumulative match score at various ranks. Addition-
ally, we assess the system’s performance on the complete score matrix, computing a generalized
metric we define as the kth-highest matching rate for k ∈ [1, 2, 3, 4, 5, 6, 7], considering there are
8 templates per finger. For a generic k, the kth-highest identification is correct if the kth highest
match returns a correct template. The identification rate is the specific case when k = 1. To the
extreme, if the correctness extends to the 7th highest match, the system demonstrates a notable
degree of robustness.
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4. Results

The results of the experiments are reported below. We begin by inspecting the results on the com-
plete 192x192 matrix and then discuss the averaged outcome on random gallery simulations.

4.1 Results on Complete Matrix
The Euclidean distance matrix and the cosine similarity matrix are visually depicted below.

Euclidean distance all-against-all matrix
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Cosine similarity all-against-all matrix

The matrices are structured in such a way that 8 consecutive rows or columns represent 8 different
templates of the same finger. Notably, along the diagonal, squares of size 8 are distinctly discernible.
This observation is promising as consecutive 8 templates are expected to be noticeably close in the
latent space, in contrast to negative templates.

Regarding the metrics, we present a graph specifically depicting the kth-highest matching rate as
k ranges from 1 to 7. The identification rate is inherently captured when k = 1, hence a separate
discussion is not provided.
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kth-highest matching rate

Remarkably, the identification probability (k = 1) for both score functions attains a perfect 1, and
as anticipated, the probability gradually decreases as k increases. Most surprisingly, even when
k = 7, the system maintains an identification rate exceeding 0.7 with both score functions. In the
subsequent section, our experiments will be built upon the euclidean distance matrix, rather than
the cosine similarity one.

4.2 Results on Random Galleries
To further assess the performance of our system, we simulate random use cases. In each case, we
construct a gallery as a random subset of test images and reserve 30 probes for querying, while still
adhering to the closed-set requirement.

We aggregate the cumulative match scores at different ranks across all 1000 simulations and
calculate the average statistics.

In detail, we simulate 1000 gallery scenarios of 30 probe queries, varying the number of guaranteed
positives per probe in the gallery. Beyond the guaranteed positive images, we randomly include
120 images in the gallery, potentially incorporating additional positives. Subsequently, we collect
the mean cumulative match scores at rank k for k ∈ [1, 2, 3, 4, 5, 6, 7].

The results are reported in the table below.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
guaranteed positives = 1 0.99657 0.9986 0.99917 0.99933 0.9994 0.99947 0.99953
guaranteed positives = 2 0.99967 0.9999 0.99993 0.99997 0.99997 0.99997 0.99997
guaranteed positives = 3 0.9998 0.99993 1.0 1.0 1.0 1.0 1.0
guaranteed positives = 4 0.9999 1.0 1.0 1.0 1.0 1.0 1.0
guaranteed positives = 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mean CMS at rank k for different configurations

For a better visual grasp, we also show the cumulative match characteristics curve, which is
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the graph of CMS as the rank k varies.

CMC Curve

Note the observed increase in the cumulative match scores (CMS) as the number of guaranteed
positive images in the gallery rises. This is a logical trend, as a greater number of positives
provides more correct identification options for each probe.
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5. Conclusion

In light of the promising applications of finger photo identification, our project revolves around
a contrastive learning framework for extracting and matching finger photo features. The pipeline
extensively employs image processing techniques to simplify feature extraction complexity, followed
by the utilization of a pretrained backbone model for image embedding, with contrastive fine-
tuning inspired by SimCLR. The obtained results underscore the effectiveness of this approach,
warranting further exploration. Potential future work involves extending the framework to open-
set identification, exploring alternative backbone models, and training with more data.

In conclusion, this project provided valuable hands-on experience, allowing us to delve into tra-
ditional image processing techniques, deep convolutional networks, transfer learning, and various
training paradigms, many of which wound up in failures.

18



Bibliography

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations, 2020.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[4] Fang-Ju Lin and Jen-Hui Chuang. Alpha matting using robust color sampling and fully con-
nected conditional random fields. Multimedia Tools and Applications, 77, 06 2018.

[5] Raid Rafi, Saba Hasan, and Sahar Mahmood. Exploiting the deep learning with fingerphotos
to recognize people. pages 13035–13046, 04 2020.

[6] Raghavendra Ramachandra and Hailin Li. Finger-nestnet: Interpretable fingerphoto verification
on smartphone using deep nested residual network, 2022.

19


	Introduction
	Motivation
	Dataset
	Project Description

	Related Work
	Dual Deep Fingerphoto Learning (DDFL)
	Finger-NestNet
	Contrastive Learning
	SimCLR


	Method
	Image Preprocessing
	Background Removal
	Orientation Alignment
	Fingertip Cropping
	CLAHE Enhancement
	Thresholding and Thinning
	Overall Transformation

	Contrastive Learning Setup
	Training Setup

	Evaluation Method

	Results
	Results on Complete Matrix
	Results on Random Galleries

	Conclusion

